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Abstract
We discuss the metal–insulator transition phenomenon in two dimensions in
terms of a quantum critical point that controls a range of the low temperature
insulator region as well as the usual quantum critical sector. We show that
this extended range of criticality permits a determination of both the dynamical
critical exponent z and the correlation length critical exponent ν from published
data from a single experiment in the insulator critical region. The resulting
value of the product zν is consistent with the temperature dependence of the
resistance in the quantum critical sector. This provides strong quantitative
evidence for the presence of a quantum critical point.

PACS numbers: 1.10.Ca, 71.30.+h

(Some figures in this article are in colour only in the electronic version)

We focus in this paper on a phenomenological description of the metal–insulator (MI) transition
phenomena in two dimensions (2D) in the case of disorder due to potential scattering.
The transition occurs as the density is tuned through a critical value n = nc. Analysis
of experimental results for the T dependence of the resistivity of Si, GaAs and other 2D
semiconductor structures in the vicinity of the observed separatrix is suggestive of a quantum
phase transition [1–3].

Let us recall the main features of a quantum phase transition. This is a phase transition
in the ground state at T = 0 as a tuning parameter � is varied through a critical point. By
definition the tuning parameter � is zero at the quantum critical point (QCP). In the metal–
insulator transition case, � is related to the carrier density n and the sign of � distinguishes
between a metallic ground state (� > 0) and an insulating ground state (� < 0). We can
consider � ∼ n − nc.
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Figure 1. Phase diagram with a QCP at � = 0 and T = 0 separating insulating and metallic
phases of the ground state. For a finite range of non-zero temperatures and � sufficiently close to
the QCP, critical exponents of both the quantum critical sector and the insulating critical sector are
determined by the QCP.

Of course experiments are done at a finite temperature. To test the hypothesis of a QCP
we require a theory which is valid at low temperature and which contains the signature of a
QCP. It must be guaranteed from the outset that the theory includes T = 0 in its domain of
validity. Therefore, in addition to �, the temperature must also be a scaling variable. These
are the leading relevant variables in a scaling description of physical properties in the vicinity
of the QCP [2, 3].

We will be giving a phenomenological scaling description of the vicinity of the QCP.
It is implicit that there exists a renormalization group (RG) foundation from which scaling
behavior of � and T could be determined. However, in the vicinity of the QCP where both �

and T are small the solutions of the RG equations for these variables are generic. The scaling
solution for � leads to a density correlation length ξ and the solution for T leads to the thermal
length LT . The density correlation length ξ ∼ |�|−ν characterizes correlations in the vicinity
of the transition at T = 0. At finite T the thermal length LT varies as 1/T 1/z [2, 3]. At � = 0
or for any ξ � LT , the LT determines the rate of decay of correlations. The vicinity of the
QCP will show critical behavior and physical properties will be determined by the ratio �/T ,
or equivalently by the ratio LT /ξ .

There are three critical sectors associated with the QCP (see figure 1). The first sector
is the low-T disordered conductor where � > 0 and �/T is large. This low-T disordered
conductor is the region where perturbative RG can be applied and this approach has yielded
the very important result that electron–electron interactions stabilize the metallic phase [4–7].
However this region is extremely complex due to long range quantum-induced correlations
that cause nonanalytical response functions [8–11] and consequently an additional source of
criticality. In fact the entire line with T = 0 to the right of the QCP is critical. This raises
complications when attempting to determine critical properties by approaching the QCP from
the metallic critical sector. However the two other critical sectors are not affected by these
nonanalyticities and thus give more direct information on the QCP. For this reason we will not
consider further the metallic sector in this paper.

The second critical sector has �/T small with � either positive or negative [2, 3]. We
will refer to this sector as the quantum critical sector (QCS)5. The third sector, with �/T large

5 In the literature this sector is also referred to as the quantum critical region.

2



J. Phys. A: Math. Theor. 42 (2009) 214011 D J W Geldart et al

and � < 0, is the low-T insulating critical sector (ICS). Criticality in the QCS is expected but
we point out that new information on criticality is also obtainable from the ICS.

The existence of a single QCP controlling both the QCS and ICS implies that the resistivity
in both sectors near the QCP is given by a single universal function of �/T . This universal
function can have different limiting forms for large and small �/T , but critical exponents in
the two sectors must be the same since they are intrinsic properties of the QCP.

Thus far we have considered only the most relevant variables near the QCP, � and T.
Another quantity relevant for the metal–insulator phenomena is the strength of the electron–
electron interaction, which is accounted for by the electron–electron scattering amplitude
γee.

The scaling equation for the resistance in the vicinity of the QCP can be expressed in the
form dρ/d log L = f (ρ, γee), with L being the length of the system or the thermal length LT .
Experimental evidence shows that γee varies slowly over the temperature range in the vicinity
of the bifurcation [12]. We assume that the effect of this weak variation of γee is to tilt the
separatrix. The effect of a tilted separatrix can be accounted for empirically and subtracted
from the experimental data near the bifurcation and in the insulating sector. Scaling equations
of the simpler form dρ/d log L = f (ρ) can then be used [13].

In order to determine an explicit scaling equation we take dρ/d log L in the insulator
to be represented as a series in powers of ρ and log ρ. The series must be positive and
monotonically increasing with ρ. Also ρ must remain finite for all finite L, diverging only in
the limit L → ∞. The leading term in the series at large L consistent with these conditions is
kρ log ρ with k being a positive constant. Otherwise ρ would diverge at finite L [14, 15]. The
scaling equation at large ρ is then

d log ρ

d log L
= k log ρ

(
1 + O

(
1

log ρ

))
. (1)

The solution of equation (1) at large L is log ρ ∼ Lk . The dominant variation of ρ

with L is expected to be exponential in the insulating limit, ρ ∝ exp(L/ξ), with ξ being the
correlation length [16]. Taking the leading variation of log ρ to be linear in L then determines
k = 1. Equivalently ρ has a log-normal probability distribution in the strong disorder limit.

To describe the T dependence of the resistance we replace L by the thermal length
LT ∝ 1/T 1/z, where z is the dynamical critical exponent of the QCP. Including the corrections
in inverse powers of log ρ in equation (1) we obtain the solution

ρ(T ) = ρ0[1 + O((T /T0)
1/z)] exp[(T0/T )1/z]. (2)

The T dependence of equation (2) is dominated by the exponential at low T so that the
relatively weak T dependence of the prefactor can be neglected. The resistance in the ICS is
thus described by

ρ(T ) = ρ0(n) exp[(T0(n)/T )1/z] (3)

and fits to the experimental data in the ICS will then give the dynamical critical exponent z.
In fact we can also obtain the critical exponent ν of the correlation length from the same

data. The exponential in equation (3) is also exp[−(LT /ξ)] [16] which implies

(T0(n)/T )1/z = LT /ξ. (4)

Then the density dependence of the temperature scale T0(n) is

T0(n) ∝ |(n − nc)/nc|zν = |δn|zν . (5)

Thus analysis of the T dependence of ρ(T ) followed by analysis of the n dependence of T0(n)

will yield z and ν, respectively.
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Figure 2. Data points taken from [20] in the ICS for densities from 0.7156 (top) to 0.8464 ×
1011 cm−2. The high resistance cutoff is taken at ρcut = 20. Solid lines are best fits using
equation (3) with z and the density dependent T0(n) as the fitting parameters.

Experimental results for the resistivity in the low-T insulating regime have been reported
for a variety of 2D systems [17–23]. To compare theory and experiment we chose to analyze
data for a Si sample from [20]. This reference contains T-dependent resistivity data over a
wide range covering the insulating sector and the region of the bifurcation.

We account for a tilted separatrix in the data by assuming it to have the functional
form log(ρsep(T )/ρc) = msepT . By interpolating between adjacent insulating and metallic
curves and extrapolating to low T we deduce msep = −0.1608 K−1 with critical resistivity
ρc = 3.757(h/e2) and critical density nc = 0.9481 × 1011 cm−2. In fitting the scaling
equations to the experimental data, we first divide all the ρ(T ) data points by ρsep(T ) to
remove the effect of the separatrix tilt [14].

For the insulating range of ρ we fitted the resulting data points to equation (3). To ensure
that fitted data lie well inside the insulating region, we selected low T, high ρ(T ) points by
restricting ρ(T ) > ρcut = 20. Numerical least squares methods determined a value of z

for each of the curves in this region. To test consistency with respect to the range of fit the
procedure was repeated for different values of ρcut up to ρcut = 30. Analysis of the resulting
set of values of z gave a mean value and standard deviation z = 2.05 ± 0.10. The curves in
the ICS for ρ(T ) > 20 in figure 2 show equation (3) for this value of z. All the data points
shown satisfy LT /ξ > 3.

We next determine the critical exponent ν from the same data. Fixing z = 2.05 ± 0.10,
we made least squares fits of the insulating data to equation (5) to obtain T0(n) for each density
curve. The fits to the data are given in figure 3 where the T0(n) points are shown as triangles.
From equation (5) it follows that T0(n) varies as |δn|zν . Figure 3 confirms this power law
dependence. The solid line is the best fit of [d(−δn)]zν to the triangles, with z = 2.05 fixed.
The best fitting parameters are d = 14.9 and ν = 1.17. Since the uncertainty in z is ±0.10 a
corresponding error estimate for ν is obtained by repeating this fitting with z = 1.95 and 2.15,
yielding ν = 1.20 and 1.15, respectively. The value of the product zν is then 2.4 ± 0.1.

The determination of a scaling equation for the resistivity in the QCS is straightforward.
After correcting for the tilted separatrix, scale invariance of the resistivity at a critical density
implies dρ/ log L = 0 at a critical resistivity ρc. Taking dρ/ log L to vanish linearly in
ρ − ρc with a slope 1/ν then provides an explicit solution near the bifurcation. Applying this
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Figure 3. Fits of experimental data within the ICS from [20] to T0(n) of equation (5) (squares).
Solid line is a fit to the squares by the function d(−δn)

zν with ν being a free parameter. The best
fit value of ν is ν = 1.17 ± 0.3. Diamonds show ˜T0(n) resulting from fits of equation (9) to the
experimental data within the QCS from [20].

Figure 4. Experimental data points in QCS for densities from 0.8900 (top) to 1.0426×1011 cm−2.
Solid lines show equation (8) using the value zν = 2.4 as determined from the ICS with ρc = 3.757
determined from the separatrix (solid straight line). The theoretical QCS curves terminate for
LT /ξ = [c|δn|/T 1/zν ]ν = 1/3.

argument to the vanishing of log(ρ/ρc) rather than to ρ/ρc [24], and integrating the scaling
equation from a starting Ls to a final L results in

log(ρ/ρc) = log(ρs/ρc)(L/Ls)
1/ν . (6)

Replacing L by LT gives

ρ(T ) = ρc exp[log(ρ(Ts)/ρc)(Ts/T )1/zν] (7)

= ρc exp[(T̃0(n)/T )1/zν] (8)

where we have identified

T̃0(n) = (ρ(Ts)/ρc)
zνTs. (9)

It is a property of equation (8) that T̃0(n) is in fact independent of the starting Ts .
Equation (8) provides an important consistency check on our proposal that the bifurcation

is due to a QCP and that the QCS and ICS share the same critical exponents. The procedure
is as follows. We use equation 7 with zν = 2.40 ± 0.10 as determined from the ICS and with
ρc determined from the separatrix, to construct a theoretical ρ(T ) for the QCS. We compare
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this constructed ρ(T ) with the experimental data points from [20] lying within the region
LT /ξ = [ρ(Ts)/ρc]ν(Ts/T )1/z < 1/3. Even though there are no fitting parameters for the
T dependence, we see in figure 4 there is good agreement. Furthermore using the same zν

determines the temperature scale T̃0(n) in equation (9). This is plotted in figure 3 and is seen
to fall on the same curve as the data from the ICS. This verifies the values of z and ν obtained
from the ICS are consistent with the product zν for the QCS and that the temperature scales
T0(n) and T̃0(n) are the same.

In summary we have shown that the region of small � and small T is critical and is
described by a scaling picture with two length scales, the thermal length LT and the correlation
length ξ . The QCP controls both the QCS at small LT /ξ and the ICS at large LT /ξ , and
these two regions share the same critical exponents. Critical behavior in the vicinity of the
bifurcation is expected, but the surprising point is that part of the insulating sector also contains
information on criticality. As a consequence both exponents can be obtained from data in the
insulating sector. A unified picture emerges for critical behavior in both the quantum critical
sector and the insulating critical sector in the neighborhood of the quantum critical point.
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